Jessica Dipold, Camila D. S. Bordon, Evellyn S. Magalhães, Luciana R. P. Kassab, Ernesto Jimenez-Villar, Niklaus U. Wetter

1337 nm Emission of a Nd3+-Doped TZA Glass Random Laser

  • General Materials Science
  • General Chemical Engineering

Random lasers have been studied using many materials, but only a couple have used glass matrices. Here, we present a study of zinc tellurite and aluminum oxide doped with different percentages of neodymium oxide (4 wt.%, 8 wt.%, and 16 wt.%) and demonstrate for the first time random laser action at 1337 nm. Laser emission was verified and the laser pulse’s rise time and input–output power slope were obtained. A cavity composed of the sample’s pump surface and an effective mirror formed by a second, parallel layer at the gain-loss boundary was probably the main lasing mechanism of this random laser system. The reason for the absence of emission at 1064 nm is thought to be a measured temperature rise in the samples’ active volume.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive