DOI: 10.3390/s24061969 ISSN: 1424-8220

1/f Noise Mitigation in an Opto-Mechanical Sensor with a Fabry–Pérot Interferometer

Andrea M. Nelson, Jose Sanjuan, Felipe Guzmán
  • Electrical and Electronic Engineering
  • Biochemistry
  • Instrumentation
  • Atomic and Molecular Physics, and Optics
  • Analytical Chemistry

Low-frequency and 1/f noise are common measurement limitations that arise in a variety of physical processes. Mitigation methods for these noises are dependent on their source. Here, we present a method for removing 1/f noise of optical origin using a micro-cavity Fabry–Pérot (FP) interferometer. A mechanical modulation of the FP cavity length was applied to a previously studied opto-mechanical sensor. It effectively mimics an up-conversion of the laser frequency, shifting signals to a region where lower white-noise sources dominate and 1/f noise is not present. Demodulation of this signal shifts the results back to the desired frequency range of observation with the reduced noise floor of the higher frequencies. This method was found to improve sensitivities by nearly two orders of magnitude at 1 Hz and eliminated 1/f noise in the range from 1 Hz to 4 kHz. A mathematical model for low-finesse FP cavities is presented to support these results. This study suggests a relatively simple and efficient method for 1/f noise suppression and improving the device sensitivity of systems with an FP interferometer readout.

More from our Archive