2D/2D Heterojunction of Ultrathin MXene/Bi2WO6 Nanosheets for Improved Photocatalytic CO2 Reduction
Shaowen Cao, Baojia Shen, Tong Tong, Junwei Fu, Jiaguo Yu- Electrochemistry
- Condensed Matter Physics
- Biomaterials
- Electronic, Optical and Magnetic Materials
Abstract
Exploring cheap and efficient cocatalysts for enhancing the performance of photocatalysts is a challenge in the energy conversion field. Herein, 2D ultrathin Ti3C2 nanosheets, a kind of MXenes, are prepared by etching Ti3AlC2 with subsequent ultrasonic exfoliation. A novel 2D/2D heterojunction of ultrathin Ti3C2/Bi2WO6 nanosheets is then successfully prepared by in situ growth of Bi2WO6 ultrathin nanosheets on the surface of these Ti3C2 ultrathin nanosheets. The resultant Ti3C2/Bi2WO6 hybrids exhibit a short charge transport distance and a large interface contact area, assuring excellent bulk‐to‐surface and interfacial charge transfer abilities. Meanwhile, the improved specific surface area and pore structure endow Ti3C2/Bi2WO6 hybrids with an enhanced CO2 adsorption capability. As a result, the 2D/2D heterojunction of ultrathin Ti3C2/Bi2WO6 nanosheets shows significant improvement on the performance of photocatalytic CO2 reduction under simulated solar irradiation. The total yield of CH4 and CH3OH obtained on the optimized Ti3C2/Bi2WO6 hybrid is 4.6 times that obtained on pristine Bi2WO6 ultrathin nanosheets. This work provides a new protocol for constructing 2D/2D photocatalytic systems and demonstrates Ti3C2 as a promising and cheap cocatalyst.