X. T. Kong, L. Zhang, H. Li, X. B. Zhu

2D/2D Mo0.74W0.26S2/Ti3C2 MXene for microwave absorption with broad effective absorption band

  • Physics and Astronomy (miscellaneous)

Transition metal dichalcogenide MoS2 is considered as a type of dielectric loss dominated electromagnetic wave absorbing material owing to the high specific surface area, layered structure, and lightweight. Introduction of interfaces will improve the electromagnetic wave absorbing performance. Here, the phase engineering of MoS2 is realized through W doping since of the microstrain effect, resulting in the appearance of 2H/1T MoS2 phase interface. Furthermore, MoS2/Ti3C2 MXene interface is realized through the construction of MoS2/Ti3C2 MXene heterostructure, leading to obvious improvements in electromagnetic wave absorbing. Because of the simultaneous introduction of 2H/1T MoS2 phase interface and the MoS2/Ti3C2 MXene interface, the microwave reflection loss can reach −45.2 dB with broad effective absorption bandwidth (<−10 dB) of 7.1 GHz (7.8–14.9 GHz) at the same thickness of 3 mm. The results shed light on enhancing electromagnetic wave absorbing performance by phase engineering as well as construction of two dimensional material/two dimensional material heterostructures, thereby introducing multiple interfaces.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive