Xiaofeng Wu, Hongliang Hua, Che Zhao, Naiyu Shi, Zhiwei Wu

A Back-Drivable Rotational Force Actuator for Adaptive Grasping

  • Control and Optimization
  • Control and Systems Engineering

In this paper, a back-drivable and miniature rotary series elastic actuator (RSEA) is proposed for robotic adaptive grasping. A compact arc grooves design has been proposed to effectively reduce the dimension of the RSEA system. The elastic elements could be reliably embedded in the arc grooves without any additional installation structures. The whole RSEA system is characterized as compact, miniature, and modular. The actuating force is controlled via a PI controller by tracking the deformation trajectory of the elastic elements. An underactuated finger mechanism has been adopted to investigate the effectiveness of the RSEA in robotic adaptive grasping. Results reveal that the underactuated finger mechanism could achieve adaptive grasping via the RSEA in a back-drive approach without the requirement of a fingertip force sensor. The RSEA could also exhibit an actuating compliance and a self-sensing characteristic. The actuating compliance characteristic helps in in guaranteeing the safety of human–robot interaction. The RSEA could estimate the external disturbance due to its self-sensing characteristic, which has the potential to replace the fingertip force sensor in grasping force perception applications.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive