Samuel S Urmy, Alex De Robertis, Christopher Bassett

A Bayesian inverse approach to identify and quantify organisms from fisheries acoustic data

  • Ecology
  • Aquatic Science
  • Ecology, Evolution, Behavior and Systematics
  • Oceanography

Abstract Identifying sound-scattering organisms is a perennial challenge in fisheries acoustics. Most practitioners classify backscatter based on direct sampling, frequency-difference thresholds, and expert judgement, then echo-integrate at a single frequency. However, this approach struggles with species mixtures, and discards multi-frequency information when integrating. Inversion methods do not have these limitations, but are not widely used because species identifications are often ambiguous and the algorithms are complicated to implement. We address these shortcomings using a probabilistic, Bayesian inversion method. Like other inversion methods, it handles species mixtures, uses all available frequencies, and extends naturally to broadband signals. Unlike previous approaches, it leverages Bayesian priors to rigorously incorporate information from direct sampling and biological knowledge, constraining the inversion and reducing ambiguity in species identification. Because it is probabilistic, a well-specified model should not produce solutions that are both wrong and confident. The model is based on physical scattering processes, so its output is fully interpretable, unlike some machine learning methods. Finally, the approach can be implemented using existing Bayesian libraries and is easily parallelized for large datasets. We present examples using simulations and field data from the Gulf of Alaska, and discuss possible applications and extensions of the method.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive