Ramez Alkhatib, Wahib Sahwan, Anas Alkhatieb, Brigitta Schütt

A Brief Review of Machine Learning Algorithms in Forest Fires Science

  • Fluid Flow and Transfer Processes
  • Computer Science Applications
  • Process Chemistry and Technology
  • General Engineering
  • Instrumentation
  • General Materials Science

Due to the harm forest fires cause to the environment and the economy as they occur more frequently around the world, early fire prediction and detection are necessary. To anticipate and discover forest fires, several technologies and techniques were put forth. To forecast the likelihood of forest fires and evaluate the risk of forest fire-induced damage, artificial intelligence techniques are a crucial enabling technology. In current times, there has been a lot of interest in machine learning techniques. The machine learning methods that are used to identify and forecast forest fires are reviewed in this article. Selecting the best forecasting model is a constant gamble because each ML algorithm has advantages and disadvantages. Our main goal is to discover the research gaps and recent studies that use machine learning techniques to study forest fires. By choosing the best ML techniques based on particular forest characteristics, the current research results boost prediction power.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive