A Brief Review on Manipulation of Essential Metal Ions as Nanomedicine for Cancer Therapy
Lin Weng, Xin Chen- General Medicine
In this review, the latest progress in essential metal‐ion‐based nanomedicines for tumor therapy is summarized, existing challenges are addressed, and possible directions are proposed for such therapeutic strategies. Essential metal ions are critical for the metabolic activity of organisms. Their abnormal spatial and temporal distribution in biological systems, particularly inside the cell, disrupts biochemical processes and leads to irreversible physicochemical damage to cells. Thus, they can function as the foundation of targeted cancer therapies for tumor inhibition and eradication. Over the last decade, numerous essential metal‐ion‐based cancer therapies have been developed to fight a wide spectrum of cancers with improved efficiency and minor drug resistance. Triggering biocatalysis, affecting protein metabolism, interfering with signal transduction, damaging DNA, and initiating biomineralization are the main mechanisms underlying these therapies. In this study, it is aimed to provide readers with general implications for future research for an increased interest in future clinical applications of these advanced cancer therapies.