S. Taileb, G. Farag, V. Robin, A. Chinnayya

A canonical numerical experiment to study detonation initiation from colliding subsonic auto-ignition waves

  • Condensed Matter Physics
  • Fluid Flow and Transfer Processes
  • Mechanics of Materials
  • Computational Mechanics
  • Mechanical Engineering

The collision of two subsonic auto-ignition fronts with initial constant velocity was found to transit to detonation only when the collision angle was acute. The interaction of the reactive phase wave with inert hot layers constituted a singularity providing a continuous source of vorticity due to barocline effect. For an acute angle, this singularity that propagated at supersonic speed induced oblique pressure waves, of which resonance, due to the reactivity gradient geometry, near the center of the channel in the fresh gases accelerated the reactive wave fronts until transition to detonation. The numerical results of the present study, even if based on drastic assumptions, were at least in good qualitative consistency with experiments. The geometry of the reactivity gradients can thus provide another seed for the coupling between gas dynamics and heat release. Continuous pressure fluctuations and oblique shocks coming from vorticity sources and sheets from barocline effects can considerably enhance this transition. This path to transition could be complementary to that invoking mixing burning within premixed non-planar turbulent flame brush.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive