A Critical Review on Immobilized Sucrose Isomerase and Cells for Producing Isomaltulose
Wenjie Jing, Feihong Hou, Xinming Wu, Mingqiang Zheng, Yue Zheng, Fuping Lu, Fufeng Liu- Plant Science
- Health Professions (miscellaneous)
- Health (social science)
- Microbiology
- Food Science
Isomaltulose is a novel sweetener and is considered healthier than the common sugars, such as sucrose or glucose. It has been internationally recognized as a safe food product and holds vast potential in pharmaceutical and food industries. Sucrose isomerase is commonly used to produce isomaltulose from the substrate sucrose in vitro and in vivo. However, free cells/enzymes were often mixed with the product, making recycling difficult and leading to a significant increase in production costs. Immobilized cells/enzymes have the following advantages including easy separation from products, high stability, and reusability, which can significantly reduce production costs. They are more suitable than free ones for industrial production. Recently, immobilized cells/enzymes have been encapsulated using composite materials to enhance their mechanical strength and reusability and reduce leakage. This review summarizes the advancements made in immobilized cells/enzymes for isomaltulose production in terms of refining traditional approaches and innovating in materials and methods. Moreover, innovations in immobilized enzyme methods include cross-linked enzyme aggregates, nanoflowers, inclusion bodies, and directed affinity immobilization. Material innovations involve nanomaterials, graphene oxide, and so on. These innovations circumvent challenges like the utilization of toxic cross-linking agents and enzyme leakage encountered in traditional methods, thus contributing to enhanced enzyme stability.