DOI: 10.3390/pr12040809 ISSN: 2227-9717

A Fault Diagnosis Method for Ultrasonic Flow Meters Based on KPCA-CLSSA-SVM

Ziyi Chen, Weiguo Zhao, Pingping Shen, Chengli Wang, Yanfu Jiang
  • Process Chemistry and Technology
  • Chemical Engineering (miscellaneous)
  • Bioengineering

To enhance the fault diagnosis capability for ultrasonic liquid flow meters and refine the fault diagnosis accuracy of support vector machines, we employ Levy flight to augment the global search proficiency. By utilizing circle chaotic mapping to establish the starting locations of sparrows and refining the sparrow position with the highest fitness value, we propose an enhanced sparrow search algorithm termed CLSSA. Subsequently, we optimize the parameters of support vector machines using this algorithm. A support vector machine classifier based on CLSSA has been constructed. Given the intricate data collected from ultrasonic liquid flow meters for diagnostic purposes, the approach of employing KPCA to decrease data dimensionality is implemented, and a KPCA-CLSSA-SVM algorithm is proposed to achieve fault diagnosis in ultrasonic flow meters. By using UCI datasets, the findings indicate that KPCA-CLSSA-SVM achieves fault diagnosis accuracies of 94.12%, 100.00%, 97.30%, and 100% in the four flow meters, respectively. Compared with the Bayesian classifier diagnostic algorithm, this has been increased by 4.18%. And compared with support vector machine diagnostic algorithms improved by the SSA, it has increased by 2.28%.

More from our Archive