Edoardo Saccenti

A gentle introduction to principal component analysis using tea‐pots, dinosaurs, and pizza

  • Education
  • Statistics and Probability

AbstractPrincipal Component Analysis (PCA) is a powerful statistical technique for reducing the complexity of data and making patterns and relationships within the data more easily understandable. By using PCA, students can learn to identify the most important features of a data set, visualize relationships between variables, and make informed decisions based on the data. As such, PCA can be an effective tool to increase students data literacy by providing a visual and intuitive way to understand and work with data. This article outlines a teaching strategy to introduce and explain PCA using basic mathematics and statistics together with visual demonstrations.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive