Yuzhong Liao, Wei Zhang, Yuwei Rong, Feng Liu, Shuaichao Wei, Long Li, Zirui Zhao, Man Li

A high geothermal setting in the Linyi geothermal field: Evidence from the lithospheric thermal structure

  • Energy Engineering and Power Technology
  • Fuel Technology
  • Nuclear Energy and Engineering
  • Renewable Energy, Sustainability and the Environment

The lithospheric thermal structure has a profound indicative significance for the potential evaluation and exploration of geothermal resources. The Linyi geothermal field, located in the southern section of the Yishu fault in Shandong Province, boasts abundant geothermal resources. However, its origin is still unclear. This study analyzed the characteristics of terrestrial heat flow using the temperature logging of geothermal wells and measurements of thermal conductivity and heat production. Combined with the geophysical information of the Xiangshui (Jiangsu Province)-Mandula (Nei Mongol) geoscience transect and the lithology revealed by the geothermal wells, this study built a conceptual model of the lithospheric thermal structure using the one-dimensional steady-state heat conduction equation. Based on this model, the heat flow is 64.9 mW/m2, indicating a high geothermal setting in the study area. Furthermore, the ratio of crustal to mantle heat flow is < 1 (0.67), implying that surface heat flow originates predominantly from the mantle. The Yishu fault probably acts as a pathway for heat transfer from the mantle. The temperature of the Moho boundary in the study area was estimated to be 614.8 °C. The Curie depth was calculated to be 29.5 km (585 °C), which is consistent with the depth estimated using the aeromagnetic data. In sum, the Linyi geothermal field has a high geothermal setting, which contributes to the formation of geothermal resources.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive