A HOOI-Based Fast Parameter Estimation Algorithm in UCA-UCFO Framework
Yuan Wang, Xianpeng Wang, Ting Su, Yuehao Guo, Xiang Lan- Electrical and Electronic Engineering
- Biochemistry
- Instrumentation
- Atomic and Molecular Physics, and Optics
- Analytical Chemistry
In this paper, we introduce a Reduced-Dimension Multiple-Signal Classification (RD-MUSIC) technique via Higher-Order Orthogonal Iteration (HOOI), which facilitates the estimation of the target range and angle for Frequency-Diverse Array Multiple-Input–Multiple-Output (FDA-MIMO) radars in the unfolded coprime array with unfolded coprime frequency offsets (UCA-UCFO) structure. The received signal undergoes tensor decomposition by the HOOI algorithm to get the core and factor matrices, then the 2D spectral function is built. The Lagrange multiplier method is used to obtain a one-dimensional spectral function, reducing complexity for estimating the direction of arrival (DOA). The vector of the transmitter is obtained by the partial derivatives of the Lagrangian function, and its rotational invariance facilitates target range estimation. The method demonstrates improved operation speed and decreased computational complexity with respect to the classic Higher-Order Singular-Value Decomposition (HOSVD) technique, and its effectiveness and superiority are confirmed by numerical simulations.