Ilya Galaktionov, Julia Sheldakova, Alexander Nikitin, Vladimir Toporovsky, Alexis Kudryashov

A Hybrid Model for Analysis of Laser Beam Distortions Using Monte Carlo and Shack–Hartmann Techniques: Numerical Study and Experimental Results

  • Computational Mathematics
  • Computational Theory and Mathematics
  • Numerical Analysis
  • Theoretical Computer Science

The hybrid model for analyzing distortions of a laser beam passed through a moderately scattering medium with the number of scattering events up to 10 is developed and investigated. The model implemented the Monte Carlo technique to simulate the beam propagation through a scattering layer, a ray-tracing technique to propagate the scattered beam to the measurements plane, and the Shack–Hartmann technique to calculate the scattered laser beam distortions. The results obtained from the developed model were confirmed during the laboratory experiment. Both the numerical model and laboratory experiment showed that with an increase of the concentration value of scattering particles in the range from 105 to 106 mm−3, the amplitude of distortions of laser beam propagated through the layer of the scattering medium increases exponentially.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive