Hekun Zhang, Xiangdong Kong, Yuebo Yuan, Jianfeng Hua, Xuebing Han, Languang Lu, Yihui Li, Xiaoyi Zhou, Minggao Ouyang

A K-Value Dynamic Detection Method Based on Machine Learning for Lithium-Ion Battery Manufacturing

  • Electrical and Electronic Engineering
  • Electrochemistry
  • Energy Engineering and Power Technology

During the manufacturing process of the lithium-ion battery, metal foreign matter is likely to be mixed into the battery, which seriously influences the safety performance of the battery. In order to reduce the outflow of such foreign matter defect cells, the production line universally adopted the K-value test process. In the traditional K-value test, the detection threshold is determined empirically, which has poor dynamic characteristics and probably leads to missing or false detection. Based on comparing the screening effect of different machine learning algorithms for the production data of lithium-ion cells, this paper proposes a K-value dynamic screening algorithm for the cell production line based on the local outlier factor algorithm. The analysis results indicate that the proposed method can adaptively adjust the detection threshold. Furthermore, we validated its effectiveness through the metal foreign matter implantation experiment conducted in the pilot manufacturing line. Experiment results show that the proposed method’s detection rate is improved significantly. The increase in the detection rate of foreign matter defects is beneficial to improving battery quality and safety.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive