Yuxiang Li, Subin Song, Hanseul Kim, Kuniharu Nomoto, Hanvin Kim, Xueying Sun, Satoshi Hori, Kota Suzuki, Naoki Matsui, Masaaki Hirayama, Teruyasu Mizoguchi, Takashi Saito, Takashi Kamiyama, Ryoji Kanno

A lithium superionic conductor for millimeter-thick battery electrode

  • Multidisciplinary

No design rules have yet been established for producing solid electrolytes with a lithium-ion conductivity high enough to replace liquid electrolytes and expand the performance and battery configuration limits of current lithium ion batteries. Taking advantage of the properties of high-entropy materials, we have designed a highly ion-conductive solid electrolyte by increasing the compositional complexity of a known lithium superionic conductor to eliminate ion migration barriers while maintaining the structural framework for superionic conduction. The synthesized phase with a compositional complexity showed an improved ion conductivity. We showed that the highly conductive solid electrolyte enables charge and discharge of a thick lithium-ion battery cathode at room temperature and thus has potential to change conventional battery configurations.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive