A Metamaterial Bandpass Filter with End-Fire Coaxial Coupling
Xianfeng Tang, Yemin Zang, Xiangqiang Li, Che XuA miniaturized metamaterial (MTM) bandpass filter (BPF) based on end-fire coaxial coupling is proposed. End-fire coaxial coupling is achieved by using the coaxial cavity to connect with the SubMiniature version A connector. The subwavelength characteristics of the MTM lead to the miniaturization advantages of the filter in transverse dimensions. Moreover, the longitudinal length of the coaxial cavity can be sharply reduced by introducing matched blocks. As a result, the proposed filter has miniaturization merit both in transverse and longitudinal dimensions. The full-wave simulation results further reveal that the MTM BPF exhibits the advantages of low loss, low reflection, and low group delay. Additionally, the fractional bandwidth is approximately 13% when |S11| is less than −15 dB. The MTM BPF might have potential applications to array antennas for easily being expanded to two dimensional arrays.