Srđan Divac, Marko Rosić, Stan Zurek, Branko Koprivica, Krzysztof Chwastek, Milan Vesković

A Methodology for Calculating the R-L Parameters of a Nonlinear Hysteretic Inductor Model in the Time Domain

  • Energy (miscellaneous)
  • Energy Engineering and Power Technology
  • Renewable Energy, Sustainability and the Environment
  • Electrical and Electronic Engineering
  • Control and Optimization
  • Engineering (miscellaneous)
  • Building and Construction

The aim of this paper is to present a methodology for the calculation of the R-L parameters of a model of a nonlinear hysteretic inductor. The methodology is based on the analysis of the instantaneous magnetising power calculated from the hysteresis loop of the inductor and is completely developed in the time domain. The instantaneous magnetising power is firstly separated into the oscillatory and absorbed components. Thereafter, the parameter R is calculated using the absorbed component and the parameter L using the oscillatory component. The methodology is validated through the comparison of the results for parameters R and L obtained with the proposed method and the existing method based on the Poynting theorem. The validation is demonstrated on the specific simulated cases with idealised parameters of a nonlinear circuit. Additionally, the paper presents results for the parameters R and L calculated from the hysteresis loops measured at frequencies from 1 to 300 Hz. Furthermore, the fitting functions representing the variation of these parameters with the rate of change of magnetic flux density, and the corresponding results, are presented in the paper. A discussion of all the results presented and applicability of the methodology proposed, as well as the concluding remarks, are given thereafter.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive