DOI: 10.1002/advs.202307598 ISSN: 2198-3844

A Near‐Infrared Fluorogenic Probe for Rapid, Specific, and Ultrasensitive Detection of Sphingosine in Living Cells and In Vivo

Yanyan Chen, Tingting Hao, Jing Wang, Yiming Chen, Xiuxiu Wang, Wei Wei, Jing Zhao, Yong Qian
  • General Physics and Astronomy
  • General Engineering
  • Biochemistry, Genetics and Molecular Biology (miscellaneous)
  • General Materials Science
  • General Chemical Engineering
  • Medicine (miscellaneous)

Abstract

Sphingosine (Sph) plays important roles in various complex biological processes. Abnormalities in Sph metabolism can result in various diseases, including neurodegenerative disorders. However, due to the lack of rapid and accurate detection methods, understanding sph metabolic in related diseases is limited. Herein, a series of near‐infrared fluorogenic probes DMS‐X (X = 2F, F, Cl, Br, and I) are designed and synthesized. The fast oxazolidinone ring formation enables the DMS‐2F to detect Sph selectively and ultrasensitively, and the detection limit reaches 9.33 ± 0.41 n

m
. Moreover, it is demonstrated that DMS‐2F exhibited a dose‐ and time‐dependent response to Sph and can detect sph in living cells. Importantly, for the first time, the changes in Sph levels induced by Aβ42 oligomers and H2O2 are assessed through a fluorescent imaging approach, and further validated the physiological processes by which Aβ42 oligomers and reactive oxygen species (ROS)‐induce changes in intracellular Sph levels. Additionally, the distribution of Sph in living zebrafish is successfully mapped by in vivo imaging of a zebrafish model. This work provides a simple and efficient method for probing Sph in living cells and in vivo, which will facilitate investigation into the metabolic process of Sph and the connection between Sph and disease pathologies.

More from our Archive