A New Method for Evaluating the Reactive Strength Index in Track and Field Sprinting: Relationships with Muscle Architecture
Simone Ciacci, Federico Nigro, Sandro Bartolomei- Fluid Flow and Transfer Processes
- Computer Science Applications
- Process Chemistry and Technology
- General Engineering
- Instrumentation
- General Materials Science
The aim of the present study was to assess a new reactive strength index (RSI RUN) based on contact time and stride length measured in sprint running and then to correlate this index with sprint performance, muscle architecture and echo intensity of the vastus lateralis. Participants included ten elite and sub-elite sprinters (age 24.4 ± 3.1 years, height 177.5 ± 7.7 cm, mass 69.8 ± 11.7 kg) who were tested with a vertical drop jump (VDJ) and a horizontal drop jump (HDJ) from a 30 cm high box, a 20 m straight-leg running drill (SLR) and a 60 m sprint. A nearly perfect correlation (r = from −0.90 to −0.96, p < 0.01) was detected between RSI RUN and sprint performance (30 m, 60 m and 100 m sprint time), and a very large correlation (r = from −0.72 to −0.77, p < 0.05) was found between the traditional RSI from vertical drop jump (RSIDJV) and sprint performance. In addition, the RSI RUN was more correlated to sprint performance than other RSI indices studied in previous research. The echo intensity of the vastus lateralis (VLEI) was largely correlated with maximum running speed (r = from 0.76 to 0.87, p < 0.05) and the RSI RUN (r = −0.80, p < 0.05). No significant correlations were noted between echo intensity and other RSIs. In conclusion, the RSI RUN and VLEI seem to be good predictors for track and field sprinting performance.