DOI: 10.3390/agriculture15020121 ISSN: 2077-0472

A New Path to Aggregate Area Expansion by Agricultural Mechanization: The Seedling Field Saving Effect of Machinery Rice Transplanting and the Case of China

Dongyan Ruan, Jinqi Tang, Juan Wang, Jing Zhou, Xiaoyong Zeng, Hanjie Liu

Aggregate area expansion is one of the important productivity impacts of agricultural mechanization. This study aims to explore potential new paths to aggregate area expansion through new forms of agricultural mechanization and estimate the relevant effects. Targeting the rapidly developing machinery rice transplanting (MRT) and the attendant centralized rice seedling cultivation (CRSC) in rural China, this article identifies a fresh path for the adoption of machinery technology to increase aggregate crop cultivation area. By analyzing two typical cases from Jiangxi Province, we unmask the mechanism through which MRT and CRSC promote aggregate area. The results indicate that, compared with the traditional method, CRSC makes technological progress in various aspects and significantly improves the supply efficiency of seedlings and the space utilization efficiency of seedling fields. This, in turn, reduces the required seedling area per unit of paddy field and thus substitutes a lot of traditional seedling fields with few modern ones. Under the rotation cropping system, CRSC releases the farming time of the potential previous crops in the saved traditional seedling fields and then increases cropping intensity and aggregate area. In the micro case, the substitution of the traditional method with CRSC can save 0.04 hectares of seedling field by serving 1 hectare of paddy field. The macro simulation results show that CRSC can, at most, increase aggregate crop cultivation area by 1.95 million hectares nationwide, and this is equivalent to an increase of 6.21 million tons of grain and 1.86 million tons of rapeseed.

More from our Archive