Nagendra Singh, Tulika Chakrabarti, Prasun Chakrabarti, Martin Margala, Amit Gupta, Sivaneasan Bala Krishnan, Bhuvan Unhelkar

A New PSO Technique Used for the Optimization of Multiobjective Economic Emission Dispatch

  • Electrical and Electronic Engineering
  • Computer Networks and Communications
  • Hardware and Architecture
  • Signal Processing
  • Control and Systems Engineering

Most power is generated using fossil fuels like coal, natural gas, and diesel. The contribution of coal to power generation is very high compared to other sources. Almost all thermal power plants use coal as a fuel for power generation. Such sources of fossil fuels are limited and thus the cost of power generation increases. At the same time, the induced toxic gases due to these fossil fuels pollute the environment. The objective of this work is to solve the economic emission dispatch problem. Economic emission dispatch helps to find out how to operate power plants at the minimum cost and induce the minimum emissions at a thermal power plant. Economic emission dispatch with constraints is a nonlinear optimization problem. For the solution of such nonlinear economic emission load dispatch problems, this work considers a new particle swarm optimization technique. The proposed new PSO gives the best solution for economic emission load dispatch and handles the constraints. For the testing of the proposed new PSO algorithm, this work considered a case study of a system of six generating units, and it was tested for load demands of 700 MW, 800 MW, and 1000 MW. The results of the new PSO for the three load demands considered give the minimum generation cost, minimum emission, and minimum total cost compared to other optimization algorithms. The proposed techniques are effective, and they can help obtain the minimum generation cost and minimize emissions.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive