Valentina Romano, Sabina Bigi, Heeho Park, Albert J. Valocchi, Jeffrey De'Haven Hyman, Satish Karra, Michael Nole, Glenn Hammond, Giampaolo Proietti, Maurizio Battaglia

A numerical model for gas CO 2 migration in a fault zone

  • Earth and Planetary Sciences (miscellaneous)
  • Economic Geology
  • Geochemistry and Petrology
  • Geology
  • Fuel Technology

Understanding whether fractures and faults impact the CO 2 migration through the overburden is critical in the evaluation and monitoring of CO 2 geological storage sites. We present a numerical model and workflow to describe the hydraulic behaviour of a fault located in the shallow part of the overburden. This helps to evaluate the sealing potential of the system in case of unwanted CO 2 migration toward the surface and to design an efficient monitoring plan. The model configuration is representative of several experiments performed at real sites under quite shallow conditions (50–500 m). The model results, applied to a selected fault outcropping in the Apennines (Italy), show that most of the gas migrates through the high permeable footwall damage zone. A significant amount of gas then dissolves into the water, emphasizing the importance of accurate modelling to assess the hazard of CO 2 leakage into near-surface aquifers or to the surface. The occurrence of pressure buildup close to the fault core points out that detailed modelling of the migration conditions is required to predict gas path through a fault zone. Thematic collection: This article is part of the Fault and top seals 2022 collection available at: https://www.lyellcollection.org/topic/collections/fault-and-top-seals-2022

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive