DOI: 10.3390/jmse11091726 ISSN:

A Numerical Study on the Hydrodynamic Performance of a Tanker in Bow Sea Conditions Depending on Restraint Conditions

Soon-Hyun Lee, Seunghyun Hwang, Hwi-Su Kim, Yeo-Jin Hyun, Sun-Kyu Lee, Kwang-Jun Paik
  • Ocean Engineering
  • Water Science and Technology
  • Civil and Structural Engineering

The importance of accurate ship performance estimation is increasing for efficient ship operation. Ship performance has been evaluated through model tests in the past, but there are limitations in terms of facilities and costs. With the spread of high-performance computers, the method of evaluating the performance of a ship by numerical analysis, especially computational fluid dynamics (CFD), has become common. There have been many numerical studies on added resistance under various wave conditions for many years, showing a high reliability. Meanwhile, most of the studies were conducted under conditions where the degree of freedom (DOF) of the ship was limited due to computational complexity. In this study, we tried to compare the added resistance performance and fluid dynamics of S-VLCC with 6 DOFs in the regular wave conditions. One of the methods for utilizing the 6 DOFs is the soft-mooring system, which allows springs to be attached to the bow and stern to recover the non-restoring force of the hull. The second method considers the free-running condition. The virtual disk is used for the self-propulsion of the ship, and the rudder can be rotated to maintain its course. The propeller rotation speed and rudder angle are controlled through PID control. The bow wave (ψ = 180°) and oblique wave (ψ = 150°, 120°) conditions were considered, and various regular wave conditions from short to long wavelengths were regarded. The effects of restraint conditions on the added resistance and motion response amplitude operator (RAO), according to each wave condition, were compared. As a result, there was a difference in the roll motion for each restraint condition, and the y-direction force and yaw moment generated on the hull were compared to analyze the cause. In addition, we observed the change in flow characteristics by comparing the streamlines around the hull and the nominal wake on the propeller plane.

More from our Archive