Xiaoxuan Jiang, Jiawei Wang, Wan Wang, Haixiang Zhang

A Predictor–Corrector Compact Difference Scheme for a Nonlinear Fractional Differential Equation

  • Statistics and Probability
  • Statistical and Nonlinear Physics
  • Analysis

In this work, a predictor–corrector compact difference scheme for a nonlinear fractional differential equation is presented. The MacCormack method is provided to deal with nonlinear terms, the Riemann–Liouville (R-L) fractional integral term is treated by means of the second-order convolution quadrature formula, and the Caputo derivative term is discretized by the L1 discrete formula. Through the first and second derivatives of the matrix under the compact difference, we improve the precision of this scheme. Then, the existence and uniqueness are proved, and the numerical experiments are presented.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive