DOI: 10.1115/1.4064187 ISSN: 0889-504X

A PROBABILISTIC APPROACH TO TURBINE UNCERTAINTY

Lakshya Bhatnagar, Guillermo Paniagua, Eugene Clemens, Matthew Bloxham
  • Mechanical Engineering

Abstract

Efficiency is an essential metric for assessing turbine performance. Modern turbines rely heavily on numerical computational fluid dynamic (CFD) tools for design improvement. With more compact turbines leading to lower aspect ratio airfoils, the influence of secondary flows is significant on performance. Secondary flows and detached flows, in general, remain a challenge for commercial CFD solvers; hence, there is a need for high-fidelity experimental data to tune these solvers used by turbine designers. Efficiency measurements in engine-representative test rigs are challenging for multiple reasons; an inherent problem to any experiment is to remove the effects specific to the turbine rig. This problem is compounded by the narrow uncertainty band required to detect the incremental improvements achieved by turbine designers. Efficiency measurements carried out in engine-representative turbine rigs have traditionally relied upon assumptions such as constant gas properties and neglecting heat loss. This research presents an uncertainty framework that combines inputs from experiments and computational tools. This methodology allows quantifying uncertainty for high-fidelity efficiency data in engine-representative turbine facilities. This manuscript presents probabilistic sampling techniques to allow for uncertainty propagation. The effect of rig-specific effects, such as heat transfer and gas properties, on efficiency is demonstrated. Sources of uncertainty are identified, and a framework is presented which divides the sources into bias and stochastic. The framework allows the combination of experimental and numerical uncertainty. Gaussian Regression models are developed to obtain speed-lines for the turbine map using the uncertainty of the measured efficiency.

More from our Archive