Jonathan Fresnedo‐Ramírez, Elizabeth S. Anderson, Katherine D'Amico‐Willman, Thomas M. Gradziel

A review of plant epigenetics through the lens of almond

  • Plant Science
  • Agronomy and Crop Science
  • Genetics

AbstractWhile genomes were originally seen as static entities that stably held and organized genetic information, recent advances in sequencing have uncovered the dynamic nature of the genome. New conceptualizations of the genome include complex relationships between the environment and gene expression that must be maintained, regulated, and sometimes even transmitted over generations. The discovery of epigenetic mechanisms has allowed researchers to understand how traits like phenology, plasticity, and fitness can be altered without changing the underlying deoxyribonucleic acid sequence. While many discoveries were first made in animal systems, plants provide a particularly complex set of epigenetic mechanisms due to unique aspects of their biology and interactions with human selective breeding and cultivation. In the plant kingdom, annual plants have received the most attention; however, perennial plants endure and respond to their environment and human management in distinct ways. Perennials include crops such as almond, for which epigenetic effects have long been linked to phenomena and even considered relevant for breeding. Recent discoveries have elucidated epigenetic phenomena that influence traits such as dormancy and self‐compatibility, as well as disorders like noninfectious bud failure, which are known to be triggered by the environment and influenced by inherent aspects of the plant. Thus, epigenetics represents fertile ground to further understand almond biology and production and optimize its breeding. Here, we provide our current understanding of epigenetic regulation in plants and use almond as an example of how advances in epigenetics research can be used to understand biological fitness and agricultural performance in crop plants.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive