Xiaohua Song, Huihui Gao, Tian Ding, Yunfeng Gu, Jing Liu, Kun Tian

A Review of the Motion Planning and Control Methods for Automated Vehicles

  • Electrical and Electronic Engineering
  • Biochemistry
  • Instrumentation
  • Atomic and Molecular Physics, and Optics
  • Analytical Chemistry

The motion planning and control method of automated vehicles, as the key technology of automated vehicles, directly affects the safety, comfort, and other technical indicators of vehicles. The planning module is responsible for generating a vehicle driving path. The control module is responsible for driving the vehicle. In this study, we review the main methods and achievements in motion planning and motion control for automated vehicles. The advantages and disadvantages of various planning and control methods are comparatively analyzed. Finally, some predictions and summaries based on the existing research results and trends are proposed. Through this analysis, it is believed that various types of algorithms will be further integrated in the future to complement each other’s strengths and weaknesses. The next area of research will be to establish more accurate vehicle models to describe vehicle motion, improve the generalization-solving ability of algorithms, and enhance the planning and control of integrated ‘human-vehicle-road’ traffic systems.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive