Robert Ahmed, Christna Ahler

A Review on Background and Applications of Machine Learning in Materials Research

In recent decades, Artificial Intelligence (AI) has garnered considerable interest owing to its potential to facilitate greater levels of automation and speed up overall output. There has been a significant increase in the quantity of training data sets, processing capacity, and deep learning techniques that are all favorable to the widespread use of AI in fields like material science. Attempting to learn anything new by trial and error is a slow and ineffective approach. Therefore, AI, and particularly machine learning, may hasten the process by gleaning rules from information and constructing predictive models. In traditional computational chemistry, human scientists give the formulae, and the computer just crunches the numbers. In this article, we take a look back at the ways in which artificial intelligence has been put to use in the creation of new materials, such as in their design, performance prediction, and synthesis. In these programs, an emphasis is placed on the specifics of AI methodology implementation and the benefits gained over more traditional approaches. The last section elaborates, from both an algorithmic and an infrastructural perspective, where AI is headed in the future.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive