DOI: 10.3390/s24103042 ISSN: 1424-8220

A Sensorized 3D-Printed Knee Test Rig for Preliminary Experimental Validation of Patellar Tracking and Contact Simulation

Florian Michaud, Francisco Mouzo, Daniel Dopico, Javier Cuadrado

Experimental validation of computational simulations is important because it provides empirical evidence to verify the accuracy and reliability of the simulated results. This validation ensures that the simulation accurately represents real-world phenomena, increasing confidence in the model’s predictive capabilities and its applicability to practical scenarios. The use of musculoskeletal models in orthopedic surgery allows for objective prediction of postoperative function and optimization of results for each patient. To ensure that simulations are trustworthy and can be used for predictive purposes, comparing simulation results with experimental data is crucial. Although progress has been made in obtaining 3D bone geometry and estimating contact forces, validation of these predictions has been limited due to the lack of direct in vivo measurements and the economic and ethical constraints associated with available alternatives. In this study, an existing commercial surgical training station was transformed into a sensorized test bench to replicate a knee subject to a total knee replacement. The original knee inserts of the training station were replaced with personalized 3D-printed bones incorporating their corresponding implants, and multiple sensors with their respective supports were added. The recorded movement of the patella was used in combination with the forces recorded by the pressure sensor and the load cells, to validate the results obtained from the simulation, which was performed by means of a multibody dynamics formulation implemented in a custom-developed library. The utilization of 3D-printed models and sensors facilitated cost-effective and replicable experimental validation of computational simulations, thereby advancing orthopedic surgery while circumventing ethical concerns.

More from our Archive