Alenka Hren, Mitja Truntič, Franc Mihalič

A Survey on the State-of-the-Art and Future Trends of Multilevel Inverters in BEVs

  • Electrical and Electronic Engineering
  • Computer Networks and Communications
  • Hardware and Architecture
  • Signal Processing
  • Control and Systems Engineering

All electric vehicles are the only way to decarbonize transport quickly and substantially. Although multilevel inverters have already been used in some transportation modes, they are rarely used in road transportation, especially in light-duty passenger BEVs. With the transition to a high 800-V DC link to extend the driving range and enable extreme fast charging, the possibility of using multilevel inverters in commercial light-duty passenger BEVs becomes feasible. Higher efficiency, higher power density, better waveform quality, lower switching frequency, the possibility of using low-rated switches, and inherent fault tolerance are known advantages of multilevel inverters that make them an efficient option for replacing 2-level inverters in high DC link passenger BEVs. This paper discusses high DC link voltage benefits in light-duty passenger BEVs, presents the state-of-the-art of different conventional multilevel inverter topologies used in BEVs, and compares them with conventional 2-level inverters from different aspects and limitations. Based on commercial upper-class passengers’ BEV data and a review of multilevel inverters on the market, future trends and possible research areas are identified.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive