Yiwen Zhu, Minzheng Gao, Mengrui Su, Yanzhe Shen, Kai Zhang, Bingran Yu, Fu‐Jian Xu

A Targeting Singlet Oxygen Battery for Multidrug‐Resistant Bacterial Deep‐Tissue Infections

  • General Chemistry
  • Catalysis

AbstractTraditional photodynamic therapy (PDT) is dependent on externally applied light and oxygen, and the depth of penetration of these factors can be insufficient for the treatment of deep infections. The short half‐life and short diffusion distance of reactive oxygen species (ROS) also limit the antibacterial efficiency of PDT. Herein, we designed a targeting singlet oxygen delivery system, CARG‐Py, for irradiation‐free and oxygen‐free PDT. This system was converted to the “singlet oxygen battery” CARG‐1O2 and released singlet oxygen without external irradiation or oxygen. CARG‐1O2 is composed of pyridones coupled to a targeting peptide that improves the utilization of singlet oxygen in deep multidrug‐resistant bacterial infections. CARG‐1O2 was shown to damage DNA, protein, and membranes by increasing the level of reactive oxygen inside bacteria; the attacking of multiple biomolecular sites caused the death of methicillin‐resistant Staphylococcus aureus (MRSA). An in vivo study in a MRSA‐infected mouse model of pneumonia demonstrated the potential of CARG‐1O2 for the efficient treatment of deep infections. This work provides a new strategy to improve traditional PDT for irradiation‐ and oxygen‐free treatment of deep infections while improving convenience of PDT.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive