Nolan Peard, Kartik Ayyer

Ab initio spatial phase retrieval via intensity triple correlations

  • Atomic and Molecular Physics, and Optics

Second-order intensity correlations from incoherent emitters can reveal the Fourier transform modulus of their spatial distribution, but retrieving the phase to enable completely general Fourier inversion to real space remains challenging. Phase retrieval via the third-order intensity correlations has relied on special emitter configurations which simplified an unaddressed sign problem in the computation. Without a complete treatment of this sign problem, the general case of retrieving the Fourier phase from a truly arbitrary configuration of emitters is not possible. In this paper, a general method for ab initio phase retrieval via the intensity triple correlations is described. Simulations demonstrate accurate phase retrieval for clusters of incoherent emitters which could be applied to imaging stars or fluorescent atoms and molecules. With this work, it is now finally tractable to perform Fourier inversion directly and reconstruct images of arbitrary arrays of independent emitters via far-field intensity correlations alone.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive