Yuzhu Wang, Xiyuan Wen, Hongfang Meng, Xiang Zhang, Ruizhe Li, Roger Serra

Accuracy Improvement of Braking Force via Deceleration Feedback Functions Applied to Braking Systems

  • Electrical and Electronic Engineering
  • Biochemistry
  • Instrumentation
  • Atomic and Molecular Physics, and Optics
  • Analytical Chemistry

Currently, braking control systems used in regional railways are open-loop systems, such as metro and tramways. Given that the performance of braking can be influenced by issues such as wheel sliding or the properties of the friction components present in brake systems, our study puts forward a novel closed-loop mechanism to autonomously stabilize braking performance. It is able to keep train deceleration close to the target values required by the braking control unit (BCU), especially in terms of the electrical–pneumatic braking transform process. This method fully considers the friction efficiency characteristics of brake pads and encompasses running tests using rolling stock. The test results show that the technique is able to stabilize the actual deceleration at a closer rate to the target deceleration than before and avoid wheel sliding protection (WSP) action, especially during low-speed periods.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive