Acrolein Induces Retinal Abnormalities of Alzheimer’s Disease in Mice
Shuyi Wang, Xiuying Jiang, Weijia Peng, Shuangjian Yang, Rongbiao Pi, Shiyou Zhou- Inorganic Chemistry
- Organic Chemistry
- Physical and Theoretical Chemistry
- Computer Science Applications
- Spectroscopy
- Molecular Biology
- General Medicine
- Catalysis
It is reported that retinal abnormities are related to Alzheimer’s disease (AD) in patients and animal models. However, it is unclear whether the retinal abnormities appear in the mouse model of sporadic Alzheimer’s disease (sAD) induced by acrolein. We investigated the alterations of retinal function and structure, the levels of β-amyloid (Aβ) and phosphorylated Tau (p-Tau) in the retina, and the changes in the retinal vascular system in this mouse model. We demonstrated that the levels of Aβ and p-Tau were increased in the retinas of mice from the acrolein groups. Subsequently, a decreased amplitudes of b-waves in the scotopic and photopic electroretinogram (ERG), decreased thicknesses of the retinal nerve fiber layer (RNFL) in the retina, and slight retinal venous beading were found in the mice induced by acrolein. We propose that sAD mice induced by acrolein showed abnormalities in the retina, which may provide a valuable reference for the study of the retina in sAD.