KOUIDER MOHAMMED RIDHA, IDIOU NESRINE, BENATIA FATAH

ADAPTIVE ESTIMATORS OF THE GENERAL PARETO DISTRIBUTION PARAMETERS UNDER RANDOM CENSORSHIP AND APPLICATION

  • General Earth and Planetary Sciences
  • General Environmental Science

In this article, we introduce adaptive estimators for parameters of the (GPD) Generalized Pareto Distribution under censored data via the KIB-estimator. The KIB-estimator is based on the Maximum Likelihood Estimates (MLE) by the exceedances over the threshold t under random censoring which was developed by [1]. Hence, it was proved that the KIB-estimator is Maximum Likelihood (ML) estimator with the uncensored case. We use the standardized MLE based on the exceedances on the uncensored situation which converge to a centered bivariate normal distribution. Whose found by [2] to standardized our adaptive KIB estimator of the GPD parameters under random censorship. As an application, we establish the asymptotic normality of an estimator of the excess-of- loss reinsurance premium for heavy-tailed distribution, through the adapted KIB estimator of GPD under censored data.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive