Tae Ha Park, Simone D’Amico

Adaptive Neural-Network-Based Unscented Kalman Filter for Robust Pose Tracking of Noncooperative Spacecraft

  • Applied Mathematics
  • Electrical and Electronic Engineering
  • Space and Planetary Science
  • Aerospace Engineering
  • Control and Systems Engineering

This paper presents a neural-network-based unscented Kalman filter (UKF) to estimate and track the pose (i.e., position and orientation) of a known, noncooperative, tumbling target spacecraft in a close-proximity rendezvous scenario. The UKF estimates the target’s orbit and attitude relative to the servicer based on the pose information provided by a multitask convolutional neural network (CNN) from incoming monocular images of the target. To enable reliable tracking, the process noise covariance matrix of the UKF is tuned online using adaptive state noise compensation, which leverages a newly developed closed-form process noise model for relative attitude dynamics. This paper also introduces the Satellite Hardware-In-the-loop Rendezvous Trajectories (SHIRT) dataset to enable comprehensive analyses of the performance and robustness of the proposed pipeline. SHIRT comprises the labeled images of two representative rendezvous trajectories in a low Earth orbit created using both a graphics renderer and a robotic testbed. Specifically, the CNN is solely trained on synthetic data, whereas functionality and performance of the complete navigation pipeline are evaluated on real images from the robotic testbed. The proposed UKF is evaluated on SHIRT and is shown to have subdecimeter-level position and degree-level orientation errors at steady state.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive