Yang Li, Linxing Xu, Xiuli Wang, Cunsong Wang

Adaptive Output Feedback Control for Nonholonomic Chained Systems with Integral Input State Stability Inverse Dynamics

  • Electrical and Electronic Engineering
  • Biochemistry
  • Instrumentation
  • Atomic and Molecular Physics, and Optics
  • Analytical Chemistry

This paper investigates a class of nonholonomic chained systems with integral input-to-state stable (iISS) inverse dynamics subject to unknown virtual control directions and parameter uncertainty included in drift terms. First, the system is divided into two interconnected subsystems according to the system’s structure. Second, one controller is designed using a switch strategy for state finite escape. Then, another controller and adaptive law are designed by combining a reduced-order state observer and backstepping method after input-state scaling. Finally, simulation results validate the feasibility of the proposed control algorithm.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive