Eric McNiffe, Tobias Ritter, Tom Higgins, Omid Sam-Daliri, Tomas Flanagan, Michael Walls, Pouyan Ghabezi, William Finnegan, Sinéad Mitchell, Noel M. Harrison

Advancements in Functionally Graded Polyether Ether Ketone Components: Design, Manufacturing, and Characterisation Using a Modified 3D Printer

  • Polymers and Plastics
  • General Chemistry

Functionally Graded Materials represent the next generation of engineering design for metal and plastic components. In this research, a specifically modified and optimised 3D printer was used to manufacture functionally graded polyether ether ketone components. This paper details the design and manufacturing methodologies used in the development of a polyether ether ketone printer capable of producing functionally graded materials through the manipulation of microstructure. The interaction of individually deposited beads of material during the printing process was investigated using scanning electron microscopy, to observe and quantify the porosity levels and interlayer bonding strength, which affects the quality of the final parts. Specimens were produced under varying process conditions and tested to characterise the influence of the process conditions on the resulting material properties. The specimens printed at high enclosure temperatures exhibited greater strength than parts printed without the active addition of heat, due to improved bond formation between individual layers of the print and a large degree of crystallinity through maintenance at these elevated temperatures.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive