Advances in paper-based electrochemical immunosensors: review of fabrication strategies and biomedical applications
Jarid du Plooy, Nazeem Jahed, Emmanuel Iwuoha, Keagan Pokpas- Multidisciplinary
Cellulose paper-based sensing devices have shown promise in addressing the accuracy, sensitivity, selectivity, analysis time and cost of current disease diagnostic tools owing to their excellent physical and physiochemical properties, high surface-area-to-volume ratio, strong adsorption capabilities, ease of chemical functionalization for immobilization, biodegradability, biocompatibility and liquid transport by simple capillary action. This review provides a comprehensive overview of recent advancements in the field of electrochemical immunosensing for various diseases, particularly in underdeveloped regions and globally. It highlights the significant progress in fabrication techniques, fluid control, signal transduction and paper substrates, shedding light on their respective advantages and disadvantages. The primary objective of this review article is to compile recent advances in the field of electrochemical immunosensing for the early detection of diseases prevalent in underdeveloped regions and globally, including cancer biomarkers, bacteria, proteins and viruses. Herein, the critical need for new, simplistic early detection strategies to combat future disease outbreaks and prevent global pandemics is addressed. Moreover, recent advancements in fabrication techniques, including lithography, printing and electrodeposition as well as device orientation, substrate type and electrode modification, have highlighted their potential for enhancing sensitivity and accuracy.