Advancing software reliability with time series insights: A non‐autoregressive ANN approach
Shiv Kumar Sharma, Rohit Kumar RanaAbstract
Software reliability is a critical factor in assessing the health of software and identifying defects. Software reliability growth models (SRGM) are used to estimate the occurrence of software faults. There are various parameterized and non‐parameterized models of SRGM. These models effectively predict fault occurrence for limited testing conditions. To resolve this problem various neural and artificial neural network (ANN) models are proposed. A problem while using ANN is over‐fitting and under‐fitting. Non‐autoregressive time series models, including ANN variants, offer promising solutions to address under‐fitting issues in SRGM, providing enhanced predictive capabilities for fault occurrence across diverse testing conditions. This study proposes a modified version with a Bayesian regularization technique to address over‐fitting. This modification aims to enhance the suitability of the Bayesian regularization framework for nonlinear autoregressive (NAR) models by carefully adjusting regularization parameters. Comprehensive testing with real‐world software failure datasets is conducted to evaluate the effectiveness of the proposed approach. The results demonstrate that our modified approach improved generalization capabilities and increased prediction accuracy. The NAR‐ANN model exhibits a lower mean squared error of 0.12935 and a higher value of 0.99853.