Aerodynamic Optimization and Wind Field Characterization of a Quadrotor Fruit-Picking Drone Based on LBM-LES
Zhengqi Zhou, Yonghong Tan, Yongda Lin, Zhili Pan, Linhui Wang, Zhizhuang Liu, Yu Yang, Lizhi Chen, Xuxiang PengPicking fruits from tall fruit trees manually is laborious and inefficient. Rotary-wing drones, a low-altitude carrier platform, can enhance the picking efficiency for tall fruit trees when combined with picking robotic arms. However, during the operation of rotary-wing drones, the wind field changes dramatically, and the center of gravity of the drone shifts at the moment of picking, leading to poor aerodynamic stability and making it difficult to achieve optimized attitude control. To address the aforementioned issues, this paper constructs a drone and wind field testing platform and employs the Lattice Boltzmann Method and Large Eddy Simulation (LBM-LES) algorithm to solve the high-dynamic, rapidly changing airflow field during the transient picking process of the drone. The aerodynamic structure of the drone is optimized by altering the rotor spacing and duct intake ratio of the harvesting drone. The simulation results indicate that the interaction of airflow between the drone’s rotors significantly affects the stability of the aerodynamic structure. When the rotor spacing is 2.8R and the duct ratio is 1.20, the lift coefficient is increased by 11% compared to the original structure. The test results from the drone and wind field experimental platform show that the rise time () of the drone is shortened by 0.3 s, the maximum peak time () is reduced by 0.35 s, and the adjustment time () is accelerated by 0.4 s. This paper, by studying the transient wind field of the harvesting drone, clarifies the randomness of the transient wind field and its complex vortex structures, optimizes the aerodynamic structure of the harvesting drone, and enhances its aerodynamic stability. The research findings can provide a reference for the aerodynamic optimization of other types of drones.