Keli Ren, Jiantao Feng, Hai Bi, Quanmei Sun, Xiang Li, Dong Han

AFM‐Based Poroelastic@Membrane Analysis of Cells and its Opportunities for Translational Medicine

  • Biomaterials
  • Biotechnology
  • General Materials Science
  • General Chemistry

AbstractCell mechanics is an emerging field of research for translational medicine. Here, the cell is modeled as poroelastic cytoplasm wrapped by tensile membrane (poroelastic@membrane model) and is characterized by the atomic force microscopy (AFM). The parameters of cytoskeleton network modulus EC, cytoplasmic apparent viscosity ηC, and cytoplasmic diffusion coefficient DC are used to describe the mechanical behavior of cytoplasm, and membrane tension γ is used to evaluate the cell membrane. Poroelastic@membrane analysis of breast cells and urothelial cells show that non‐cancer cells and cancer cells have different distribution regions and distribution trends in the four‐dimensional space composed of EC, ηC. From non‐cancer to cancer cells, there is often a trend of γ, EC, ηC decreases and DC increases. Patients with urothelial carcinoma at different malignant stages can be distinguished at high sensitivity and specificity by analyzing the urothelial cells from tissue or urine. However, sampling directly from tumor tissues is an invasive method, may lead to undesirable consequences. Thus, AFM‐based poroelastic@membrane analysis of urothelial cells from urine may provide a non‐invasive and no‐bio‐label method to detecting urothelial carcinoma.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive