El Jirie N. Baticados, Sergio C. Capareda, Cole I. Mitchell

Airflow Resistance of Solid-Separated Dairy Waste for Drying and Storage

  • Energy (miscellaneous)
  • Energy Engineering and Power Technology
  • Renewable Energy, Sustainability and the Environment
  • Electrical and Electronic Engineering
  • Control and Optimization
  • Engineering (miscellaneous)
  • Building and Construction

The resistance of solid-separated solid wastes (SSDWs) to moderate airflow ranging from 0.05 to 0.30 m3/s-m2 was measured at various bed depths and moisture levels. The pressure drop across a loose-fill fixed bed column was observed to increase more rapidly with increasing airflow rates than with increasing bed depths. An increase in the moisture content (10 percentage points) caused a decrease in the pressure drop by an average of 13.2–17.0%, evaluated within a 10–40% moisture content (MC) range. A full-factorial model analysis using standard least squares was used to describe the main effects and interactions of the test parameters in predicting the pressure drop. The Hukill and Ives nonlinear model was able to accurately describe the airflow resistance data of SSDWs at various MCs. Empirical curves describing the SSDW resistance to airflow were developed to aid in the preliminary design of ventilation systems for drying and storage.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive