Jingchen Wang, Qihe Shan, Jun Zhu, Xiaofeng Cheng, Baoze Wei

Algebraic-Connectivity-Based Multi-USV Distributed Formation Method via Adding a Reverse Edge

  • General Mathematics
  • Engineering (miscellaneous)
  • Computer Science (miscellaneous)

This paper concerns the formation problem in multi-USV cluster formation containment tracking tasks with a special topology. A topology reconstruction method was proposed that enables the followers’ formation to be dispersed while achieving the fastest convergence rate for the system. This topology structure is based on tree topology and DAG (directed acyclic graph) local structure stem as prototypes, using the principle of adding reverse edges on the stem to reduce algebraic connectivity. By adding a reverse edge to obtain a more dispersed formation, a method for selecting appropriate reverse edges was achieved. Through relevant theoretical quantitative and qualitative analysis, it was demonstrated that adding this reverse edge can enable the system to achieve the fastest convergence rate. Finally, through simulation experiments, it was verified that the selected reverse edge can optimize the formation of followers and achieve the fastest convergence rate.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive