Sixiang Ran, Wenjun Ni, Chunyong Yang, Zhongke Zhao, Shun Wang, Perry Ping Shum

Alterable interferential fineness for high temperature sensing calibration based on Bragg hollow core fiber

  • Atomic and Molecular Physics, and Optics

We propose, what we believe to be, a novel method for high temperature sensing calibration based on the mechanism of alterable interferential fineness in Bragg hollow core fiber (BHCF). To verify the proof-of-concept, the fabricated sensing structure is sandwiched by two sections with different length of BHCF. Two interferential fineness fringes dominate the transmission spectrum, where the high-fineness fringes formed by anti-resonant reflecting optical waveguide (ARROW) plays the role for high temperature measurement. Meanwhile, the low-fineness fringes induced by short Fabry-Perot (F-P) cavity are exploited as temperature calibration. The experimental results show that the ARROW mechanism-based temperature sensitivity can reach 26.03 pm/°C, and the intrinsic temperature sensitivity of BHCF is 1.02 pm/°C. Here, the relatively lower magnitude of the temperature sensitivity is considered as the standard value since it merely relies on the material properties of silicon. Additionally, a large dynamic temperature range from 100 °C to 800 °C presents linear response of the proposed sensing structure, which may shine the light on the sensing applications in the harsh environment.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive