Jascha Rolf, Julian Handke, Frank Burzinski, Stephan Lütz, Katrin Rosenthal

Amino acid balancing for the prediction and evaluation of protein concentrations in cell‐free protein synthesis systems

  • Biotechnology

AbstractCell‐free protein synthesis (CFPS) systems are an attractive method to complement the usual cell‐based synthesis of proteins, especially for screening approaches. The literature describes a wide variety of CFPS systems, but their performance is difficult to compare since the reaction components are often used at different concentrations. Therefore, we have developed a calculation tool based on amino acid balancing to evaluate the performance of CFPS by determining the fractional yield as the ratio between theoretically achievable and experimentally achieved protein molar concentration. This tool was applied to a series of experiments from our lab and to various systems described in the literature to identify systems that synthesize proteins very efficiently and those that still have potential for higher yields. The well‐established Escherichia coli system showed a high efficiency in the utilization of amino acids, but interestingly, less considered systems, such as those based on Vibrio natriegens or Leishmania tarentolae, also showed exceptional fractional yields of over 70% and 90%, respectively, implying very efficient conversions of amino acids. The methods and tools described here can quickly identify when a system has reached its maximum or has limitations. We believe that this approach will facilitate the evaluation and optimization of existing CFPS systems and provides the basis for the systematic development of new CFPS systems.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive