Hung T. Diep, Miron Kaufman, Sanda Kaufman

An Agent-Based Statistical Physics Model for Political Polarization: A Monte Carlo Study

  • General Physics and Astronomy

World-wide, political polarization continues unabated, undermining collective decision-making ability. In this issue, we have examined polarization dynamics using a (mean-field) model borrowed from statistical physics, assuming that each individual interacted with each of the others. We use the model to generate scenarios of polarization trends in time in the USA and explore ways to reduce it, as measured by a polarization index that we propose. Here, we extend our work using a more realistic assumption that individuals interact only with “neighbors” (short-range interactions). We use agent-based Monte Carlo simulations to generate polarization scenarios, considering again three USA political groups: Democrats, Republicans, and Independents. We find that mean-field and Monte Carlo simulation results are quite similar. The model can be applied to other political systems with similar polarization dynamics.

Need a simple solution for managing your BibTeX entries? Explore CiteDrive!

  • Web-based, modern reference management
  • Collaborate and share with fellow researchers
  • Integration with Overleaf
  • Comprehensive BibTeX/BibLaTeX support
  • Save articles and websites directly from your browser
  • Search for new articles from a database of tens of millions of references
Try out CiteDrive

More from our Archive