An Algorithm for Building Exterior Facade Corner Point Extraction Based on UAV Images and Point Clouds
Xinnai Zhang, Jiuyun Sun, Jingxiang Gao- General Earth and Planetary Sciences
The high-precision building exterior facade corner point (BEFCP) is an essential element in topographic and cadastral surveys. However, current extraction methods rely on the interactions of humans with the 3D real-scene models produced by unmanned aerial vehicle (UAV) oblique photogrammetry, which have a high workload, low efficiency, poor precision, and cannot satisfy the requirements of automation. The dense point cloud contains discrete 3D building structure information. Still, it is challenging to accurately filter out the partial point cloud characterizing the building structure from it in order to achieve BEFCP extraction. The BEFCPs are always located on the plumb line of the building’s exterior wall. Thus, this paper back-calculated the plumb line from the image and designed a photographic ray corresponding to the image point and point cloud intersection point calculation algorithm to recover its approximate spatial position in order to successfully extract the accurate point cloud in the building structure neighborhood. It then utilized the high signal-to-noise ratio property of the point cloud as a base to eliminate the noise points and, finally, accurately located the building exterior façade corner points by recovering the building structure through segmental linear fitting of the point cloud. The proposed algorithm conducted automated building exterior facade corner point extraction via both of planar-to-stereo and rough-to-precise strategies, reached a 92.06% correctness rate and ±4.5 cm point mean square location error in the experiment, and was able to extract and distinguish the building exterior facade corner points under eaves obstruction and extreme proximity. It is suitable for all high-precision surveying and mapping tasks in building areas based on oblique photogrammetry, which can effectively improve the automation of mapping production.